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Abstract 
-~ -~ -~ 

A measurement on a quantum system- is said to cause the “collapse” 
of the quantum state vector or density matrix. An analogous collapse 
occurs with measurements on a classical stochastic process. This paper 
addresses the question of describing the response of a classical stochas- 
tic process when there is feedback from the output of a measurement to 
the input, and is intended to give a model for quantum-mechanical pro- 
cesses that occur along a space-like reaction coordinate. The classical 
system can be thought of in physical terms as two counterflowing prob- 
ability streams, which stochastically exchange proba.bility currents in a 
way that the net probability current, and hence the overall probability, 
suitably interpreted, is conserved. The proposed formalism extends the . 
mathematics of those stochastic processes describable with linear, single- 
step, unidirectional transition probabilities, known as Markov chains and 
stochastic matrices. It is shown that a certain rearrangement and com- 
bination of the input and output of two stochastic matrices of the same 
order yields another matrix of the same type. Each measurement causes 
the partial collapse of the probability current distribution in the midst of 
such a process, giving rise to caiculabie, but non-Markov, values for t.he 
ensuing modification of the system‘s output probabiIity distribution. The 
paper concludes with an analysis of a classical probabilistic version of t.he 
so-ca!led grandfather paradox. 

1 Introduction 
In a previous paper [l], the author proposed a formalism for describing the 
evolution of a Schrodinger wave function for a single particle along a spacelike 
reaction coordinate, where the time was taken as one of the transverse coor- 
dinates. The principal objective of that study was to establish a version of 
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one-body nonrelativistic quantum mechanics in which che time plays a natural 
role as an operator/observable. The present work is a preliminary attempt to  
address another aspect of the formalism in [l] (mentioned in Sec. 4 therein), that  
is, is there a self-consistent theory of measurement in a quantum mechanics in 
which there is feedback from the outcome of a measurement to the input to the 
measurement? This problem does not occur in conventional quantum mechan- 
ics when the time is the coordinate of evo!ution (but see [2] for an extension of 
quantum mechanics that can describe physical processes with feedback in the 
time dimension). The present study is preliminary in that we shall propose, and 
analyze the consistency of, only a classical analog t o  such a quancuni system 
and of certain measurements upon it. 

We can represent a physical system by a point moving in a transverse space, 
such that the point's transverse position is a function (which is, in general, 
multi-valued) that is parametrized by a spacelike coordinate of evolution, and 
such that both forward and backward motion along the evolution coordinate 
are possible physically a n d a r e  distinguished mathematically. We-divide the - - 

transverse space, tn-hich can include the time direction, by a fine-grained mesh 
into a large number of boxes, zF of which are associated with forward motion, 
G-d hB with backward motion. In turn, the elements of the former are grouped 
info subsets called coarse-grained boxes, and similarly for the latter. The sys- 
tem point can jump fiom any one box to another, including to/from forward 
fromjto backward motion, in one of a sequence of lumped zones of interaction. 
W-e shall not attempt to  give concrete realizations to the physics of these zones, 
but merely presume a given set of transition probabilities associated with each 
zone. A second type of zone will represent measurements: We assume that mea- 
surement zones do not give rise to forwardrbackward transitions, but merely 
distinguish an incomina signal according to which of the coarse-grained boxes 
detected the trajectory's cransit in each instance that the system point passes 
through such a zone. 

Classical mechanics, probabihty theory and the associated stochastic pro- 
cesses have simplifying advantages over quaatuin systems: (i) there are no in- 
terference phenomena in combining sub-processes, (ii) closed channels-domains 
inaccessible LO classical mechanical systems-do not carry probability currents, 
and (iii) a measurement of the 6rst kind (in Pauli's sense, i3j. p. 75) a&& a 
probabili9- distribmion for a sing!e system, but, insofar as we sum over all pos- 
sible measurement outcomes, does not affect the distribution for an ensemble of 
systems. There are many textbooks on the subject of probability and stochastic 
processes, e.g. 141, [5], [6], [7], [8], and specifically on Markov processes, e.g. [9] 
Ch. XV, [lo], [ll], [12] Ch. 7, [13], [14] Ch. 6. 

We shall keep to the analysis of state spaces that are discrete, and adhere 
to  the nomenclature recommended in [6]. p. 188, Table 6.1: the entities to be 
studied wdl be called Markov chains; ivlarkov processes deal with continuous 
state spaces, as in Brownian motion. Markov chains can be associated with 
a either a discrete or a continuous evolution parameter, which is usually-but 
herein not necessarily-understood to be the time. This paper will deal 0nl3r 
with chains with a discrete evolution coordinate. and with a finite smte space 
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An n x n matrix A,  with exclusively nonnegative real entries A 3 k ,  is called 
stochastic, if its column sums are all equal to 1, that is 

n 

C A j k  = 1, for k =  1,2, . . . ,  n. 
j=1 

This notation is the transpose of that often used in mathematical texts, (see, for 
example, [14], Ch. 6.1), and is adopted in order to facilitate the eventual com- 
parision to  formulas in quantum mechanics. In fact, let U be an n-component 
column (“state”) vector with nonnegative components U k ,  and let the compo- 
nents of the n-vector V be 

n 

then if also 
k = l  

n 

(3) C U k  = 1, 

Cv, = 1. (4) 

It= 1 
the property (1) entails 

n 

j = 1  

A stochastic matrix as -4 is often called a matrix of transition probabilities. 
The product of two stochastic matrices of the same order is also stochastic 

([14], Ch. VI, Th. l . l(d)).  The present work is based on a result derived below: 
there is another way to combine two stochastic matrices, which depends on a 
kind of rearrangement of what constitutes input and what output, and that also 
yields a stochastic matrix, provided that the combining process converges. 

The remainder of this paper is organized as follows. In section 2, we shall 
define, and exhibit some properties of, a nonconventional synthesis of stochastic 
matrices that yields another stochastic matrix. These results will be shown to 
describe That will be called “bidirectional Markov chains” in that both input 
and output to the process will occur at both ends of an int,erval in a coordinate 
describing the evo!ution of a stochastic process. In section 3, we shall study the 
effect of a sequence of “coarse-grained” intermediate measwenients of the first 
kind on the predicted output of such a system; the transition matrix for such 
a measurement depends on the input, and hence the measurement process is a 
nonlinear, i.e., non-Markovian, mapping of input into output. Section 4 com- 
pletes the paper with a comparision of conditional probabilities with the collapse 
of a probability distribution, and analyzes a classical-probabilistic version of the 
grandfather paradox. 

2 Bidirectional Markov chains 

In this section we shall deconstruct stochastic matrices of the same order in a 
parallel manner and fashion a synthesis of such matrices in a way that yields 
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another stochastic matrix that is not the matrix product of its ingredient ma- 
trices. 

Let A be a s  in (l), and let nF,  nB be an integer partition of n: 

(5  1 nF + nB = n. 

The integer nF will be the number of forward- (F)-propagating Components, 
or channels, of the probability state vector, while nB will be the number of 
backward- (B)-propagating channels. Accordingly, we can partition A as 

I where the subscripts stand for a complete array of sub-matrix elements, with 
a,,B = 1 , 2 , .  . . , nF and a, b = 1 , 2 , .  . . ,nB.  Consistent with (21, the causal order 
in the superscripts on the sub-blocks of A are to be read from right to left; 
similarly, the input to output channels are ordered from right to left in the 

_. ._ - -. _ _  -- - su,bscripts. - -  

I Let us introduce two more n x n stochastic matrices C and &I, partitioned 
as A, with C nonspecial; the M stands for ‘:ineasurement”. For the purposes of 
this section, the matrix M is presumed to be a &xed stochastic inatrix 

where AJFF and M B B  are nonspecial nF x nF and nB x nB stochastic ina- 
trices, respectively. The zeroes for the off-diagonal blocks of M correspond to 
the physical assumption that a measurement process gives rise to no F 4 B 
transitions. 

Figure 1 shows the hookups of the channels cLiijring probability: UF, X F ,  
YF and V F  are the vectors of forward-flowing probability, with nF channels 
each, as in (UF),, Q! = 1 , 2 , .  . . ,nF; V B ,  Y’, X B  and U B  are the vectors 
of backward-flowing probability, with nB components each, as in (V-S)),, a = 
1,2 , .  . . , nB; and U F  and V B  are the prescribed input vectors. The dashed 
lines within the boxes A, Ad, and C represent the action of the sub-matrices in 
diverting and inking the ficw of probability current vectors. 

There is a feedback loop given by the causal sequence X”, M F F ,  Y”, C B F ,  
Ys, AdBB, X”, and -qFB; the entry points to the loop are marked on Fig. 1 
with a circled 1 and 2, the exit points with circled 3 and 4. In what follows, 
we shall consider the time to be one of the transverse directions: Although 
conventional physical systems can be in only one spatial position at a given 
time, such systems can be at more than one time in a given spatial position; 
therefore, we must consider the circumstance that the system passes through 
the feedback loop either zero, or one, or two, etc., times before exiting. 

W e  define I F F  and I B B  to be the nF x nF and nB x nB unit matrices, 
respectively. b o ,  let RF and E’ be single-rowed matrices with nF and nB 
columns, respectively, all entries being 1 in both matrices, e.g., 

(8) (R - F  )a = 1, forcu=1,2 , . . . ,  n F . 
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Let us check first that overall probability current is conserved in the transition 
from input to output. We apply (sa) and (9b) to the sums-over-channels of 
corresponding sides of (loa) and (lob), and apply similarly (9c) t o  ( ~ O C ) ,  (9d) 
to (lOd), and (9e) and (Sf) to the sum of (loe) and (100, thereby obtaining 

R F X F  + R B U B  = R F U F  + p p ,  
-F F R Y = RFX;F. 

R B x B  = R B y B  7 

R F V F  + R B y B  = R F y F  + R B V B .  

Therefore, the apparatuses -4, Ad, and C conserve probability current, so that 
we have the  combined result 

(13) R F i i F  + R B u B  = R F r r F  .+ j p i , r B .  

We also need to prove that, whenever the components af the input vectors 
U F  and V B  are nonnegative, the components of the output vectors V F  and U B  
are likewise nonnegative. It is convenient to obtain this result from an explicit 
form for the matrix mapping input into output. T47e can use (1Oc) and (10d) 
to eliminate Y F  and X B  from (loa), (lob), (loe), (109, then use the first and 
fourth of the latter set to obtain X F  and Y B  in terms of U F  and V B ,  and then 
use the second and third to obtain V F  and U B  in terms of U F  and V B .  We 
first define the auxiliary matrices LFF and LBB,  dhere L stands for “loop”: 

LFF = [.IFF - A F s l l / l B B C B F A / l F F ] - l ,  

L B B  = [ I B B  - C ~ F A ~ F F A F B J ~ B B ] - ~  
(134  

(1 3b) 
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The product matrices AFBILIBBCBFA/I”-* and C3F-MFFkFB2ViEB are as- 
sumed to  be sufficiently close to the nF x nF and nB x nB zero matrices, 
respectively, so that the inverses in (13) exist. Then we have 

XF = LFF[AFFuF + A F B M B B C B B V B  

y B  = L B B [ c B F M F F A F F ~ F  + c B B v B ]  

We now represent the complete mapping of input into output by an n x n matrix 
S. such that 

1, (144 

P4b) 

Then (10) and (14) entail 

(16a) 

(16b) 

(164  

sFF = cFFMFFLFFAFF,  

s F B  = C F F M F F L F F A F B A ~ B B C B B  + c F B ,  I 

- -. 

SB-= _4BF + A B B - ~ I B B L B B ~ ~ F A ~ F F A F F ,  (16C)-- 
sBB = _ ~ B B M B B L B B c B B  

Given convergence, (13a) and (13b) can be represented in infinite series 
expansions 

m=l 
03 

LBB = I B B  f ( C B F A 4 F F - 4 F B ~ B B  >”. (1%) 
m= 1 

Each sumniand in these series consists of products of matrices with nonnegative 
elements, so that all the elements of both LFF and LBB are nonnegative. In 
turn, we infer from (16) that  all the elements of the matrix S are nonnegative, 
and (12) implies that  the column sums of S are all $1; hence, S is a stochastic 
matrix mapping overdl input into overall output. We have thereby achieved 
the principal goal of this section. 

Are remark further on the convergence of the sums for LPF and La”. These 
sums represent the complete feedback loop taken at  the entry points labeled 1 
and 2, respectively, in Fig. 1. Both A and C have n(n - 1) free parameters, 
subject to the inequalities that each element is nonnegative and less than 1. 
If one or both off-diagonal blocks AFB ar,d C”’ have all elements suficiently 
small the sum in (17) will converge: In fact, suppose that 

( c B F M F F A F B k f B B ) a b  = €Dab, (18) 

where 0 _< E < 1, and where 

n* 

(19) E D a *  _< 1, f o r b = 1 , 2  , . . . ,  n B . 

a=l 



Then we have 

a=l a . c= l  c=l 

Similarly, the column sums of ( D T ) a b l  and therefore the individual elements 
of D“, are majorized by 1. Hence each element in the matrix sum in (17b) 
converges. Since we have 

‘ 

i~‘S~z.iS”c”-F~~F”j 

= AFBMBB(CBFMFFAFBMBB)m-lCBFMFFl m = 2,3, .  . . (21) 

the sum in (17a) also converges. It can be arranged that divergence occurs 
as the upper bound E approaches 1. Since no element of D can exceed 1, the 
set of matrices -4 and C that  give rise to a divergent sum will be of lower 
dimensionality, a kind of boundary se t  within the set of all possible stochastic 
matrices A and C. There is no full 2n(n - 1)-dimensional domain of stochastic 
matrices A and C that yields divergent feedback processes. 

3 Intermediate measurements 

In this section, we shall partition both the nF F-type and the nB B-type channels 
into coarse-grained subsets, and presume that at each crossing of the system 
point through the device M, a measurement is made of which coarse grain the 
system traversed. We shall also presume, analogous to the quantum-mechanical 
postdate of Luders ([15] Eq. (7)-see also [lG], Eq. (43), et seq., and [17], 
Eq. (2)), that within a coarse grain the measurement process does not change 
the relative strengths of the probability currents in the constituent fine-grained 
channels. The latter assumption entails a nonlinearity in the stochastic process, 
at least for individual trials-see the analysis below. -4s in Sec. 4, the above 
model for the effect of a coarse-grained measurement is straightforwardly related 
to the usual constructs for conditional probabilities. Note that we are assuming 
a measurement to be of the first kind ([3], p. 75), that is, a second me,. = silremeiit 
of the coarse-grained structure of the current vector following the first would 
yield the same result as the first-the measurement has no dynamical effect on 
the system but only determines the coarse-grained state of the system. 

tive integers partitioning nF and nB , respectively, with partial SUMS 

Let {n, F F  , n2 , .. . , nrF} and { n f ,  nf , . . . , nfB} be ordered sequences of posi- 

7 



We also define the projection’ matrices 

(23b) 
dab, a ,  b = p:-l -t 1,. . . : p : ;  for each I/ = 1,.  . . , uB, 

(Iv9B)ab = { 0, otherwise. 

It is also convenient to define certain probabilities that are associated with the 
ckCUmS+””^n +LA+ -- :-.-.A ..-- ,.-+ +^ -- ̂ --^- ,.*-.- * 2 - I - - - -  

ycwI.-b ulluu all I u y u b  cULlc~~b b u  alI appalabua  is plcaullleu, ur K~IUWT~ after 
the fact, to be diverted into a particular subset of the set of output channels. In 
fact, let i2 be the matrix associated with an apparatus such as A,  M, or C, and 
let p:“‘ be the subblocks with labels E, 3’ = F, B, and let input and output 
vectors be Wi:’ and Wo:t, respectively. These are related by 

- 
- ~ ~~~ 

- ryz, = i2=z’K:’/N(s1?&:’), ( 2 4  

where A- is a normalization factor. Note that all the input probability current 
is presumed to be allocated to the subset of 3-type channels, and in the same 
fine-grained proportion that is governed by the input and by r;he macrix s1. In 
order to conserve probability current we must have 

(2s) N (RE? , wlz’) = RjQ”‘’ &,-,:’ f @ \,jTz‘ 
In . 

Then a detection in the dh F-type coarse-grained channel entails the following 
mapping of X F  into Y F :  

(26) Y F  = M F F  ” ( XF ) =def I,””X”/-W(I,”F,XF). 

XB = M E B ( Y B )  =def IyB”Y”/N(I,””,YB). 

Similarly, a detection in the vth B-type channel entails the folloxing mapping: 

(27) 

We now specify the set of possible scenarios (i.e., the sample space) affclrded 
by the above-descrihed system (cf. Fig. 1): and wsign a transition m&ik to  each 
scenario. The physical system’s trajectory is taken to be continuous. so that in 
progressing from an input t o  an output channel, a sequence of measurements of 
F and B type can be assigned; we need not consider, for example, two successive 
F-cype measurements in the sample space. In particular, we have f a -  UF to VF 
transitions the possible sequences 

U F  -+ MCF -4 VF, 
U F  -+ MZ” ---f ME: ---f AdzF -+ V F ,  

etc., 
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c\ihere the "etc." stands for two, three, and so on, times around the feedback 
loop. For U F  to UB transitions we have the sequences 

uF -+ U B ,  
U F  -+ Pivo F F  -+ M;B -+ U B ,  

LTF -+ Pi: -+ A4TB + M c F  -+ M,;B i UB, 
etc. (29) 

For V B  t o  V F  transitions v e  have 

We assume that both the vF and, separately, the vB coarse-grained chan- 
nels cover a large number of adjacent, but nonoverlapping, time windows, and 
that each passage through the apparatuses A and C takes a substantial positive 
amount of time, such that in practice it is possible to take an originally un- 
ordered set of measurements and infer the physical sequence of coarse grains at 
which the system trajectory crossed the measuring apparatus M .  It is, therefore, 
possible to assign to each set of measured data uniquely to one of the processes 
listed in (28)-(31). (We shall consider below the case that this sequencing of the 
measured data is not feasible.) This coiistruction entails the result that most of 
the possible sequences of measurenlenm in (25)-(31) will have zero probability 
of occurring: in the third line of (29), for example, if the time interval associated 
with 
the probability of this sequence occurring is zero. These zero probabilities are 
built into the dynamics of the system by the matrices A and C, and need not 
be iwoked as separate hypotheses. 

We also assume that the matrices AFB and/or CBF have sufficiently small 
elements that the probability that the system undergoes more than a moderate 
number of feedback loops is small, that is, that the sums in (17a) and (17b) 
converge rapidly. 

Let us describe in detail a nontrivial example, from which one can infer a 
rule of calculation for any of the scenarios listed or implied in (28)-(31). Let US' 

calculate the conditional probability that a trajectory enters, occasions a chosen 
sequence of exactly four measurements, and exits, as in the third line of (29); 

is the sanie, or earlier th in ,  the time interval zssocixed with 
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the trajectory is presumed to cross M F F ,  M B B  , -  U F F ,  AdBB in the sequence of 
coarse-grained windows labeled UO, uo,, ul, VI! , respectively. We then have ten 
stages connected by nine processes, defined recursively as follows: 

(The first four arguments of U B  signify the prescribed measurement sequence 
in order from right to left; the subscript 1 means that the trajectory traverses 
exactly one complete feedback loop in getting from U F  to  U”.) Should any one 
of the above-computed rhs’s-apart from the normalization factors-be zero, 
we stop the computation and say that the given scenario cannot happen, that  
is, it  is impossible for the system trajectory to enter at UF, hive rise to the 
specified sequence of measured values, and exit at UB with nonzero current. 
For each specified sequence of coarse-grained measurements, therefore, we have 
a well-defined output: if the sequence is not a possible process we put U B  = 0, 
and if the sequence is possible, we obtain an output with the same normalization 
as the input, 

~ B ~ - ~ ( ~ , ~ , , u ~ , u o ~ , u o ;  UF) = i i F U F .  (33) 
The output U” in (32j) is a conditiond probability, that is, given the input 

vector U F  and given r;he sequence of four measurements, it describes the dis- 
mibution of fine-grained probabilities of outcomes U B .  We shall nom- propose 
how to determine the probabilities for the fine-grained transitions UF -+ liB 
of (32), such that the sequence of measurements is not preassigned but is in a 
sense part of the output: that is, what is the probability, with illput liF as the 
only “given”, that  the outcome comprises exactly the sequence of measurements 
of (32) followed by the trajectory exiting in one of the fine-grained channels of 
UB? Our claim is that the result is the product of the liB of (32j) with the 
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nine normalization factors of the rhs’s of (32b)-(32j), that is, 

U , ” [ V ~ / , V ~ , U ~ ~ , V ~ ] ( U ~ )  = N ( A F F , U F ) .  . . N ( A B B , X 1 , )  

x U ~ ( ~ l ~ , Y , U o ’ , V o ; U F )  (34a) 
- A B B I B B c B F I F F  ~ F B I B B C B F I F F A F F D - F  

I / ,  I v1 ~ ”0‘ ”0 
- 

(34b) 

We reemphasize that,  in (34), the notation implies that  the output on the lhs 
is not conditioned on the sequence of measurements, but treats that sequence 
as part of the output information that is subject to chance. We argue in favor 
of (34a) as follows: The given sequence of measurements, together with the 
input (UF) and output ( U B )  modes, allow us to infer the unique sequence of 
encounters of the system trajectory with the apparatuses -4, -A!, and C, as in 
(32). We know, therefore, that in the first passage through A (in (32b)) the 
transitions entailed by AFF,  and not those of ABF,  occurred. The minimal 
assumption is that the components of the new vector x[ have the same ratios 
to one another as they would have in the absence of this knowledge, but that 
the_ vector’s components are each enhanced by a common factor such that the 
net output current is equal to  that of the input; the partial output current 
without the above, or any, information as to how the input current was diverted 
by A, is simply -%c(UF)  = A F F U F  with no multiplying factor. A similar 
argument applies to the steps (32d), (32f), (32h), and (32j). With respect to 
trajectory’s first passage across a measuring device in (32c), the probability 
that the device M will register the coarse grain vo is, by the usual rule for 
conditional probabilities, just the ratio given by N ( I C F ,  -F:) ; the distribution 
of output over the complete set of fine-grained F-type channels is therefore 
YF [VO] ( U F )  = IEFg[, with no multiplying factor. A ss idar  argument obtains 
for (32e), (32g), and (331). Therefore, (34) is established. 

We note that 

”= 
I F F  = C I y )  

Therefore, we have 

where the last rhs is just the probability distribution in UB starting with U F  
that is predicted with exactly one feedback loop, and with no detailed coarse- 
grained measureiiients having been made, i.e., A / l F F  = I F F  and AdBB = I B B .  
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This result corresponds to a term in the series expansion of the second summand 
on the rhs of (1Gc). If we sum over all possible continuous paths and all possible 
measurement outcomes in the transition from U F  to UB, we recover the whole 
rhs of (lGc), and similarly for the other blocks of (16). That is, the overall 
outcome when no measurements are made, as in (16), can be constructed from 
an ensemble of results of detailed measurements on the system. 

We now consider that, in passing iYom a U F  channel to a UB channel, the 
trajectory crosses M twice in the F direction, with registered values YO, VI, and 
twice in the B direction with registered values uol, ulr ,  but such that it is not 
possible to infer froin these data in wbich oi& the respective pairs of F-type 
and B-type crossings occurred along the trajectory. In particular, the system 
can pass through the same coarse grain twice ( V I  = uo or zq, = ~ 0 ‘ ) .  The total 
number of possible processes is 

1 __ (37) F 2  B 2  number = (Y ) (v ) . 

We characterize sets of data in the folloriing four ways: (i) v1 = vo and VI’ = V O ~ ,  

(ii) u1 = vo and Y ~ J  # VO?, (iii) v1 f vo and = YO!, and (iv) ~1 + vo and 
# YO!. The unordered sequences have (i) one,-(ii) two; (iii)-tct-o, and (iv) four 

ordered ways to be realized; we must sum over probabilities for the respective 
distinct ordered processes in order to infer the ner; probability for an unorderable 
sequence of measured coarse-gain values to be detected. Given only that the 
process U B  c UF has occurred Kith two crossings each of M F F  and .AdBB, 
the probability that this outcome occurs but no detailed measurements are 
made on the state of the system at a crossing can still be obtained by summing 
probabilities over the disjoint subsets of unordered measurements. 

._ - -~ _ -  _. ~ .~ 

I 

I 

4 Discussion 

The principle of evaluating conditional probabilities describes the effect of a 
collapse of a probability distribution. In fact, let S be an index set with elements 
C E S. Ler; SI arid S, be noneinptj. subsets of S. Let pic) j 7 ~  a probability 
distribution such that 0 _< p ( < )  _< 1, and 

Now suppose that it be given that S, is “true”, in that we now take as input 
information the circumstance that p(<)  = 0 for C in the complement of S2 in S. 
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Then F[;e infer a collapsed probability distribution 

otherwise. p(CIS2) =def (39) 

We obtain the usual conditional probability law I 
in an obvious notation. The probabilities p ( [ )  and p(ClS2) can also be described 
as the distributions before and after the limiting case of a non-interventional 
measurement on the system, respectively. 

Let us now stud? the c2se that there are no intermediate measurements per- 
formed in the system described in Fig. 1, Le., M F F  = I F F  and M B B  = I B B .  
Let us also take nF = 2 and nB = 1, and label the F-type channels with sub- 
scripts 1 and 2. We shall analyze a probabilistic version of the grandfather 
paradox ([18], passim), and show that in this context of classical probability 
flows, without the destructive interference that can- be provided- by quantum 
mechanics, a feedback loop is incapable of decreasing the F to F survival prob- 
ability of a state or channel to a lower value than it would have if the feedback 
were absent. Let us take 

A =  [ , O  0 1  p” 1 ,  (41a) 

c = [ ;  ; j l  (41b) 

0 0 1-CY--p 

1 -7  0 0 

(41c) 

x-here 0 _< a,@, (1 - Q - $), y 5 1 and QY < 1. According to (13) we have 

(13a) 

(42h) 

1/(1 -a? )  0’ 

1 1 -  
LF‘F = 

L B R  = 1/(1 -ay), 
[@7,(1 - or) 

so that 

(434  

(43b) 

Pr/P -Q7) 1 
(1 -?)/(I - ar) 0 S F F  = 1 [ 

S B F  = [y(1- a -  P)/(l -cry) 01. 

Given that the inputs are ( U F j 1  = 1, ( U F ) 2  = 0, and V B  = 0, the outputs vF 
and U B  are given by the first columns of SFF and SBF.  We consider y to stand 
for a signal sent backwards from the apparatus C,  and the ( U F ) l  -+ (VF)i 
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transmission to  be controlled by the feedback parameter a. When ct = 0 the 
feedback loop is open. As a increases from zero to one. the output signal 

(VF)l = (1 - Y)/P - 07) (44) 

always increases. 
It is plausible, therefore, t o  infer that a nonzero feedback loop in classical 

probability can only increase the survival probability of the classical state of 
interest, here the f i s t  component of the F-type state vector, above its value when 
the feedback loop is zeroed. We infer that only quantum-mechanical feedback 
will have the capability of diminishing the survival probability of a physical state 
within a feedback sysyem of the type of Fig. 1. Two recent online preprints 
([19], [20], and references given therein) study time travel from the viewpoint 
of conventional quantum mechanics. I believe that the proper framework for 
analysis of quantum-mechanical time-travel phenomena is a quantum analog of 
the classical system described in the present paper, for which the basic dynamics 
is described in [a]; the task of analysis of quantum-mechanical feedback and- 
measurement wirhin the formalism of 121 remains to be accomplished 

-~ ._ - - 
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